NegPSpan: efficient extraction of negative sequential patterns with embedding constraints
نویسندگان
چکیده
Mining frequent sequential patterns consists in extracting recurrent behaviors, modeled as patterns, in a big sequence dataset. Such patterns inform about which events are frequently observed in sequences, i.e. what does really happen. Sometimes, knowing that some specific event does not happen is more informative than extracting a lot of observed events. Negative sequential patterns (NSP) formulate recurrent behaviors by patterns containing both observed events and absent events. Few approaches have been proposed to mine such NSPs. In addition, the syntax and semantics of NSPs differ in the different methods which makes it difficult to compare them. This article provides a unified framework for the formulation of the syntax and the semantics of NSPs. Then, we introduce a new algorithm, NegPSpan, that extracts NSPs using a PrefixSpan depth-first scheme and enabling maxgap constraints that other approaches do not take into account. The formal framework allows for highlighting the differences between the proposed approach wrt to the methods from the literature, especially wrt the state of the art approach eNSP. Intensive experiments on synthetic and real datasets show that NegPSpan can extract meaningful NSPs and that it can process bigger datasets than eNSP thanks to significantly lower memory requirements and better computation times.
منابع مشابه
Negative-GSP: An Efficient Method for Mining Negative Sequential Patterns
Different from traditional positive sequential pattern mining, negative sequential pattern mining considers both positive and negative relationships between items. Negative sequential pattern mining doesn’t necessarily follow the Apriori principle, and the searching space is much larger than positive pattern mining. Giving definitions and some constraints of negative sequential patterns, this p...
متن کاملMining Sequential Patterns with Time Constraints: Reducing the Combinations
In this paper we consider the problem of discovering sequential patterns by handling time constraints as defined in the Gsp algorithm. While sequential patterns could be seen as temporal relationships between facts embedded in the database where considered facts are merely characteristics of individuals or observations of individual behavior, generalized sequential patterns aim at providing the...
متن کاملAn Efficient Method For DNA Extraction From Paraffin Wax Embedded Tissues For PCR Amplification Of Human And Viral DNA
Background and Objective: Formalin-fixed paraffin-embedded tissues are a valuable source of DNA for molecular studies. We designed and optimized an efficient procedure for DNA extraction from formalin-fixed paraffin embedded tissues. Materials and Methods: Seventy three blocks of cervical paraffin-embedded tissues were investigated. DNA was extracted using 45 minutes boiling in alkaline sol...
متن کاملDoes Fundraising Have Meaningful Sequential Patterns? The Case of Fintech Startups
Nowadays, fundraising is one of the most important issues for both Fintech investors and startups. The pattern of fundraising in terms of “number and type of rounds and stages needed” are important. The diverse features and factors that could stem from Fintech business models which can influence success are of the key issues in shaping these patterns. This study applied the top 100 KPMG Fintech...
متن کاملEfficiently Mining Closed Subsequences with Gap Constraints
Mining frequent subsequence patterns from sequence databases is a typical data mining problem and various efficient sequential pattern mining algorithms have been proposed. In many problem domains (e.g, biology), the frequent subsequences confined by the predefined gap requirements are more meaningful than the general sequential patterns. In this paper we re-examine the closed sequential patter...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2018